Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Signal Transduct Target Ther ; 8(1): 108, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2268983

ABSTRACT

Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mice , Animals , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , COVID-19/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-18/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy/genetics , Inflammation/genetics , Inflammation/metabolism , Cytokines
2.
Sci Rep ; 12(1): 696, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1621270

ABSTRACT

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Subject(s)
Acute Chest Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Antibodies, Neutralizing/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Disease Models, Animal , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , SARS-CoV-2/pathogenicity , Swine
3.
Curr Opin Pulm Med ; 27(5): 342-349, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1269618

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). RECENT FINDINGS: Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. SUMMARY: The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.


Subject(s)
COVID-19 , Lung Diseases , Vascular Diseases , Humans , Pandemics , Pulmonary Circulation , SARS-CoV-2
4.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1219850

ABSTRACT

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Antibodies, Monoclonal , Humans , Mice , Mice, Inbred C57BL , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL